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ABSTRACT
In this paper we address the problem of designing a P2P
system for distribution real-time video streams through the
Internet. The main advantage of this approach is to use
the available bandwidth unused by the set of machines con-
nected to the network. The main difficulty is that these
machines are typically highly dynamic, they continuously
enter and leave the network. To deal with this problem, we
explore a multi-source approach where the stream is decom-
posed into several flows sent by different peers to each client.
To evaluate the impact of this approach on quality, we use
PSQA, a recently proposed method that allows to obtain
a good approximation of the quality as perceived by each
client. In particular, we provide a variant of muti-source
techniques using some redundancy in the signal, illustrating
with real data how the methods allow to compensate effi-
ciently the possible losses of frames due to peers leaving the
system.

Keywords
Multi-source streaming, path diversity, quality-of-service,
video quality, perceptual quality, PSQA.

1. INTRODUCTION
There is nowadays an increasing growth of multimedia

systems present in the Internet. This is a consequence of
the development of broadband accesses in residential users,
together with the adoption by content providers of new busi-
ness models. It has been observed that, roughly speaking,
the content’s volume doubles every year, while the demand
is increased by a factor of three These systems have many
different architectures, depending on their sizes and on the
popularity of their contents. The majority of them have a
traditional CDN (Content Delivery Network) structure [3,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LANC’07 October 10-11, San José, Costa Rica
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23], where a set of datacenters absorbs all the load, that
is, concentrates the task of distributing the content to the
customers. This is, for instance, the case of msnTV [17],
YouTube [24], Jumptv [9], etc., all working with video con-
tent1.

An increasingly popular alternative consists of using the
often idle capacity of the clients to share the distribution
of the video with the servers, through the present mature
Peer to Peer (P2P) systems, which are virtual networks de-
veloped at the application level over the Internet infrastruc-
ture. The nodes in the network, called peers, offer their
resources (bandwidth, processing power, storing capacity)
to the other nodes, basically because they all share common
interests (through the considered application). As a con-
sequence, as the number of customers increases, the same
happens with the global resources of the P2P network. This
is what we call scalability in the Internet.

P2P networks are becoming more and more popular to-
day (they already generate most of the traffic in the Inter-
net). For instance, P2P systems are very used for file sharing
and distribution; some known examples are Bittorrent [2],
KaZaA [10], eMule [4], etc.

The problem is that peers connect and disconnect with
high frequencies, in an autonomous and completely asyn-
chronous way. This means that the resources of the network
as a whole are also highly dynamic, and thus, that the net-
work must be robust face to these fluctuations. This is the
main challenge in P2P design: to offer the quality needed
by the clients in a highly varying environment.

In this paper, we are interested in some aspects related to
the use of a P2P architecture to distribute live video. Using
a P2P infrastructure for video distribution looks like a good
idea due to the high requirements in terms of bandwidth of
these applications. Streaming services in VoD (Video on De-
mand) has similar characteristics. However, real-time video
streaming (live TV) has different and strong constraints that
imply a series of specific technical problems because of the
before-mentioned P2P dynamics. Our work is then con-
cerned with finding solutions to these problems.

As we said before, P2P systems are scalable, due to the
high availability of unused resources of the users. The main

1In general, the technology used is derived from those as-
sociated with Web applications, based on the HyperText
Transfer Protocol (HTTP) [8, 11, 19].



problem is how to provide good quality levels in a context
where this quality depends on other clients that are deliv-
ering the stream, and given the fact that users connect and
disconnect very frequently. The main idea that has been
considered to deal with these problems is to build the sys-
tems using some redundancy in the signals. In this paper we
explore one of them: multi-source streaming. This means
that the live video stream is received by the client from flows
sent by many sources simultaneously. This needs some de-
gree of intelligence put on the senders that build a set of
streams from an original one, allowing to re-compose the
stream to be played with the different received components,
and some degree of intelligence on the client side, for per-
forming this last task, and perhaps for building a satisfac-
tory stream even when some of those components are miss-
ing. This approach allows for a large flexibility of the system,
modulated by the dynamics of the network. In particular,
it is in principle possible to increase the number of sources
and/or the amount of redundant information sent through
the network; this opportunity can be used as a tool to deal
with the problem of nodes leaving the network (we will refer
to this situation as a node failure) and causing partial signal
losses to some clients. We will say that a node fails to refer
to the fact that it leaves the network.

This flexibility must be carefully tuned in order to get a
satisfactory quality level at a minimal cost. The usual ap-
proach here is to use a well chosen metric, that we know
plays an important role in quality, such as the loss rate
of packets, or of frames. In this paper we instead address
the problem of measuring perceived quality by means of the
PSQA technology [12, 14, 15]. PSQA is a general procedure
that allows the automatic measure of the perceived quality,
accurately and in real-time. We apply the technique to the
case of multi-source streaming for live video, and improve
its efficiency for video analysis by studying the flows at the
frame level, instead of the packet level previously considered
in the literature.

In order to face the high dynamics of such a system, we
explore a multi-path approach where (i) the stream is de-
composed in some way into several flows, (ii) each client re-
ceives several flows following different paths and sent from
different other clients, (iii) the client is able to reconstruct
the stream from the whole set of received flows and possibly
from part of them ; moreover, (iv) the system measures au-
tomatically the perceived quality at the client continuously,
and takes its decisions (basically, periodically rebuilding the
architecture of the network) using these values.

The paper focuses then on the analysis of the impact on
the perceived quality, as captured by the PSQA metric, of
the fact that the stream is received from several nodes de-
composed into different flows (explaining the term multi-
sourcing). Our main goal is the description of a global
methodology that can be used to design such a P2P dis-
tribution algorithm. This is illustrated by considering the
extreme cases where the flows are just copies of the original
sequence (a very high redundancy level), where the sequence
is split into simple disjoint sub-streams (without redundancy
at all), and where the sequence is split into redundant sub-
streams for a N + 1 failure schema (i.e. when is possible
to reconstruct completely the stream with only one server
failure). After some modeling work needed for the devel-
opment of a PSQA module able to compute the perceived
quality in real-time, we do some experiments in order to ex-

plore the consequences of these architecture choices on the
quality level, extending the preliminary results presented in
a previous paper [18].

The paper is organized as follows. Section 2 introduces
multi-source streaming techniques. Different video quality
measurements are presented in Section 3, and in particular
PSQA. In Section 4 we present a P2P network for live multi-
source streaming, and a model of the nodes disconnection
from the client’s perspective. Section 5 develops models to
estimate the streaming performance, in a environment with
server nodes fails, needed to the construction of the PSQA
measuring module. They calibrate the multi-source stream-
ing on the basis of the perceptual quality. In Section 6 some
experimental results are introduced. The main contributions
of this work are then summarized in Section 7.

2. MULTI-SOURCE STREAMING
The main architecture we are considering in this paper is

the following one. Some server producing a live video stream
splits this stream into several flows, with some amount of
redundancy in them (that is, together they can transport
“more information” than contained in the original video
signal), and it sends each of these flows to a specific set
of clients. The clients in turn send the received flows to
other nodes. The architecture must ensure that each client
receives the different flows from different nodes. So, from
the client’s point of view, we have a multi-source delivering
system.

The simplest situation is when there is a single server
node which sends all the streaming information to the clients
(see Fig. 1).

Figure 1: Single source streaming method

Let us consider instead the case where the server will send
more than one flow composing the original signal. The qual-
ity of service perceived at the client node will be a function of
the policy being used to distribute the streaming among the
different flows, of the degree of redundancy, and of the loss
rates and loss bursts due to transport network conditions
or to instabilities at the P2P server nodes. An important
complementary aspect is the degree of redundancy being
employed; in this case of multiple servers, the extreme cases
are to completely replicate all the information, or to apply
no redundancy at all.

In the first case, the policy being applied is “copy”: each
of the server nodes sends the full streaming to the client,
which will then be less prone to quality problems caused by
frames lost by communication problems. That is, this is the
full redundant scheme where the client receives many copies
of the complete flow (Fig. 2).



Figure 2: Multi-source streaming copy method

In the second case, we have a “split” policy: each server
sends a fraction of the streaming information, without any
redundancy, and the loss of information at any of these flows
will imply also losses at the client. Fig. 3 represents this
scheme. More precisely, we will consider the case of sending
frame 1 in flow or substream 1, frame 2 in flow 2, up to
frame K in flow K, then frame K + 1 in flow 1, etc. (see
below).

Figure 3: Multi-source streaming split method

A situation between these two extreme policies is to split
the stream into K redundant sub-streams, with the neces-
sary redundancy to avoid losses during a single server dis-
connection. Fig. 4 represents this scheme.

Of course, we can expect that in a fault context, with
more redundancy better quality will be achieved. The cost of
this improvement is a larger bandwidth consumption. If the
bandwidth of the original stream is B, then the bandwidth of
the “copy” method is KB, B for the “simple split” method,
and 2B for the“redundant split” method.

Figure 4: Multi-source streaming redundant
method

Although in this work we concentrate on these extreme
policies (either zero redundancy, full replication of the in-
formation sent by each server, or redundancy to avoid losses
during one server fault), it is clear that the degree of redun-
dancy admits many other possibilities in-between.

In Section 5 we develop models for our three multi-source
streaming policies (with K servers each one of them). The
goal is to evaluate the values of the two parameters we
need to build the PSQA quality assessment values, LR and
MLBS . The quantitative evaluation of these models not
only can give some insights into QoS characteristics of multi-
source streaming in a P2P network, but also can serve as
bounds for the expected behavior of other policies with an
intermediate replication level.

3. QUALITY MEASUREMENTS
This section discusses different ways of dealing with the

perceived quality in a video delivering system.

3.1 Subjective tests
Perceived video quality is, by definition, a subjective con-

cept. The mechanism used for assessing it is called subjective
testing. It consists of building a panel with real human sub-
jects, which will evaluate a series of short video sequences
according to their own personal notion of quality. An al-
ternative is to use a (smaller) panel of experts. In the first
case, we will get the quality of the sequences as seen by an
average observer. In the second case, we can have a more
pessimistic (or optimistic, if useful) evaluation. The output
of these tests is typically given as a Mean Opinion Score
(MOS). Obviously, these tests are very time-consuming and
expensive in manpower, which makes them hard to repeat
often. And, of course, they cannot be a part of an automatic
process (for example, for analyzing a live streaming in real
time, for controlling purposes). There exist standard meth-
ods for conducting subjective video quality evaluations, such
as the ITU-R BT.500-11 [7]. Some variants included in the
standard are: Double Stimulus Impairment Scale (DSIS),
Double Stimulus Continuous Quality Scale (DSCQS), Single



Stimulus (SS), Single Stimulus Continuous Quality Evalua-
tion (SSCQE), Stimulus Comparison Adjectival Categorical
Judgement (SCACJ) and Simultaneous Double Stimulus for
Continuous Evaluation (SDSCE).

3.2 Objective tests
Other solutions, called objective tests, have been proposed.

Objective tests are algorithms and formulas that measure,
in a certain way, the quality of a stream. Peek signal to
noise ratio (PSNR), ITS’ Video Quality Metric (VQM) [1,
22], EPFL’s Moving Picture Quality Metric (MPQM), Color
Moving Picture Quality Metric (CMPQM) [20, 21], and Nor-
malization Video Fidelity Metric (NVFM) [21]. With some
exceptions, the objetive metrics propose different ways of
comparing the received sample with the original one, typi-
cally by computing a sort of distance between both signals.
So, it is not possible to use them in a real-time passive test
enviroment, because the received and the original video are
needed at the same time in the same place. Besides, these
quality metrics often provide assessments that do not cor-
relate well with human perception, and thus their use as a
replacement of subjective tests is limited.

3.3 Pseudo Subjective Quality Assessment
(PSQA)

The Pseudo Subjective Quality Assessment (PSQA) [13]
is a technique allowing to approximate the value obtained
from a subjective test but automatically. The idea is to
have several distorted samples evaluated subjectively, that
is, by a panel of human observers, and then to use the re-
sults of this evaluation to train a specific learning tool (in
PSQA the best results have been obtained using Random
Neural Networks [5]) in order to capture the relation be-
tween the parameters that characterize the distortion and
the perceived quality. This method produces good evalua-
tions for a wide range variation of all the quality affecting
parameters. For instance, in [13], the authors present evalu-
ations with correlation coefficients with the evaluation done
by human observers up to 0.97.

Let us briefly describe the way PSQA works. We start
by choosing the parameters we think will have an impact
on quality. This depends on the application considered, the
type of network, etc. Then, we must build a testbed allowing
us to send a video sequence while freely controlling simulta-
neously the whole set of chosen parameters. This can be a
non-trivial task, especially if we use a fine representation of
the loss process.

We then choose some representative video sequences (again,
depending on the type of network and application), and we
send them using the testbed, by changing the values of the
different parameter values. We obtain many copies of each
original sequence, each associated with a combination of val-
ues for the parameters, obviously with variable quality. The
received sequences must be evaluated by a panel of human
observers. Each human observer evaluates many sequences
and each sequence is evaluated by all the observers (as spec-
ified by an appropriate subjective test norm). After this
subjective evaluation, we must apply a statistical filtering
process to this evaluation data, to detect (and eliminate, if
necessary) the bad observers in the panel (a bad observer is
defined as being in strong disagreement with the majority).
All these concepts have well defined statistical meanings.

At that stage we apply the training process, which learns

the mapping from the values of the set of parameters into
quality. The output of this learning process is then a func-
tion able to build a quality value from the values of the
parameters (with very low computational effort).

Fig. 5 represents graphically the whole process.

Figure 5: Training PSQA method

After training, PSQA is very easy to use: we measure the
values of the chosen parameters at time t and then we use
them as the inputs of the function returned by the RNN
tool, which gives the instantaneous perceived quality at t.
See Fig.6 where we represent PSQA in operation.

In this work, we focus on two specific parameters con-
cerning losses, because previous works on PSQA have shown
that the loss process is the most important global factor for
quality. We consider the loss rates of video frames, denoted
by LR, and the mean size of loss bursts, MLBS , that is,
the average length of a sequence of consecutive lost frames
not contained in a longer such sequence. The MLBS pa-
rameters capture the way losses are distributed in the flow.
It is important to observe that in previous work using the
PSQA technology the analysis was done at the packet level.
Here, we are looking at a finer scale, the frame one, because
quality is more directly influenced by loss frames than by
loss packets. Packet-level parameters are easier to handle
(in the testbed and from the measuring point of view in the
network), but frame-level ones provide a more accurate view
of perceived quality.



Figure 6: Using PSQA method

4. P2P NETWORK AND MODEL
Peer-to-Peer are virtual networks developed at the appli-

cation level over the Internet infrastructure. The nodes in
the network, called peers, share their resources (bandwidth,
processing power, storing capacity) among themselves, basi-
cally because they have common interests (through the con-
sidered application, for instance a real-time football match
video streaming).

Using a P2P infrastructure for real-time video distribution
seems a good idea due to the high bandwidth requirements
of these applications. However, real-time video streaming
(live TV) has strong constraints that imply a series of spe-
cific technical problems principally because of the connec-
tions/disconnections dynamics of the peers. In a P2P net-
work, the nodes connect and disconnect with high frequen-
cies, in an autonomous and completely asynchronous way.
This means that the resources of the network as a whole
are also highly dynamic, and thus, that the network must
be robust face to these fluctuations. It has been shown in
a previous work [13], that video streaming quality, as per-
ceived by the user, is specially sensitive to frame losses; this
means that it is important that the design of the P2P ar-
chitecture mitigates the impact of losses coming from node
disconnections. We think that this is the main challenge in
the design of a live-video P2P network: to offer the quality
needed by the clients in a highly varying environment, and
this is the topic discussed in this work.

To provide good quality levels in a context where this
quality depends on the behavior of other clients that are de-
livering the stream, it is necessary to use some redundancy

in the signals. In Section 2 we explained how to achieve this
with multi-source streaming techniques. These streaming
methods allow for a large flexibility of the system, modu-
lated by the dynamics of the clients. In particular, it is pos-
sible to increase the number of sources and/or the amount of
redundant information sent through the network (the three
multi-source streaming techniques discussed have different
redundant information degree and can be potentially used
with any amount of servers).

To decide which client will serve another one, some degree
of intelligence and knowledge about the peers and the net-
work state is needed. An important research effort is being
done on this hot topic. The different proposals are based
on decentralized or centralized algorithms, with structured
or unstructured delivery, etc., depending on the specific ap-
plication considered. Again, from the client point of view,
these possible assignments can be modeled after some delay
(or time of convergence) T . That is, considering a client
receiving the stream from K independent servers, when one
of these servers leaves the network, whatever the assignment
algorithm used, it will need some time to operate, time de-
noted in the sequel by T .

In this section we describe a simple Markovian model used
to represent the server connection/disconnection process in
a multi-source streaming context. We adopt the following
simplifying assumptions. The connection-time of any node
acting as a server (that is, most of the nodes in the net-
work) is exponentially distributed with some parameter λ.
That is, 1/λ is the expected time a customer remains con-
nected. Thus, it can be estimated from network statistics
(strictly speaking, we refer here to the servers’ connection
time, which means that, to estimate λ, we must sample on
the population of clients acting as servers; this usually hap-
pens after a minimal amount of connection time). Since
we further assume that the servers leave the network inde-
pendently of each other, the number of connected servers
sending the stream to a fixed but arbitrary customer,, at
time t, considering that the network was re-built at time 0
and that no other re-building process is done in [0, t], is a
Markov process with states K, K − 1, . . . , 1, 0. The corre-
sponding transition graph is shown in Figure 7.

Since the failures of the components are assumed to occur
independently, the probability that any of them is operating
at time t is e−λt, and thus, the number of active servers at
time t is Binomial with parameters K and e−λt. In other
words, if pK,i(t) is the probability that i servers among the
initial K are still operating at time t, then we have

pK,i(t) =

 
K

i

!
e−iλt(1− e−λt)K−i, K ≥ i ≥ 0, λ, t ∈ <.

In this work we use 1/λ = 900 sec. and T = 10 sec. To
compute the value of λ, we employed logs of user behavior
(specifically connection times) from the live-video service
offered by a medium-sized ISP, which gave us access to this
information. We filtered the information of very short lived
nodes, as in the proposed architecture we suppose that the
servers are P2P nodes, it is reasonable to assume that the
mean-life of the users will correspond to the expected stay
of the servers in our model. Some values of pK,i(t) are given
in Table 1 based on measured data.



K K−1 K−2 2 1 0

Kλ (K−1)λ 2λ λ

Figure 7: The Markovian model used to represent the evolution of the number of connected servers sending
the stream to the same (arbitrary) client.

Table 1: The probability of having i servers still con-
nected at time T , for K initially connected servers
(at time 0, representing the last re-configuration of
the network), that is, the number pK,i(T ), for some
values of K and all i ≤ K; other data: 1/λ = 900 sec,
T = 10 sec (these are typical values).

i/K 1 2 3 4 5

0 0.0110 0.0001 0.0000 0.0000 0.0000
1 0.9890 0.0219 0.0004 0.0000 0.0000
2 0.9780 0.0324 0.0007 0.0000
3 0.9672 0.0427 0.0012
4 0.9565 0.0528
5 0.9460

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0018 0.0000 0.0000 0.0000 0.0000
5 0.0627 0.0024 0.0001 0.0000 0.0000
6 0.9355 0.0724 0.0032 0.0001 0.0000
7 0.9252 0.0818 0.0041 0.0001
8 0.9149 0.0910 0.0050
9 0.9048 0.1000
10 0.8948

Observe that when K increases, the probability of observ-
ing a server failure increases as well. So, the interest in using
several servers must be balanced against the probability of
having failures before the next re-configuration point.

5. MULTI-SOURCE STREAMING MODELS
In this section we discuss some possible ways of sending

the stream using K parallel servers, and the corresponding
impact on the quality.

5.1 SendingK copies of the stream
Assume K copies of the same stream travel following in-

dependent and stochastically equivalent paths to the same
terminal. The loss process at any of the K streams is rep-
resented by the server failure model described in previous
section. It is clear that the receiver will observe the loss of
a frame only if all the K copies of the frames are lost. If
LRcopy

K,i denotes this global Loss Rate with K servers multi-

source, and i connected among them, we then have:

LRcopy
K,i =

(
1 if i = 0

0 otherwise
, K ≥ i ≥ 0, K ≥ 1.

The global Mean Loss Burst Size is, in this simple case,

MLBS copy
K,i =

(
∞ if i = 0

@ otherwise
, K ≥ i ≥ 0, K ≥ 1.

5.2 Simple split of the stream intoK ≥ 2 sub-
streams

In the other extreme case considered in this paper, we
have K substreams transporting each a frame over K in the
following way: frame 1 goes through substream 1, frame
2 through substream 2, until frame K going through sub-
stream K; then frame K + 1 is sent through substream 1,
frame K + 2 through substream 2, etc. In general, frame n
is sent by substream ((n− 1) mod K) + 1.

Assuming independence in server failures again, the global
Loss Rate of this scheme is obviously proportional to the
number of faulty servers; when i of them are still connected,
we have

LRsplit
K,i =

K − i

K
, K ≥ i ≥ 0, K ≥ 1.

To help getting a feeling of numerical values, we plot in
Table 2 this global Loss Rate for some values of K and all
i ≤ K.

The evaluation of the Mean Loss Burst Size is much more
involved than the previous one, but since our goal is to guar-
antee some quality level, we only use a trivial lower bound
and an upper bound, by observing that, by definition,

1 ≤ MLBS split
K,i ≤ K − i, K ≥ i ≥ 0, K ≥ 1.

5.3 Split of the stream intoK ≥ 2 substreams,
adding complete redundancy

Between these two extreme policies (copy and split cases),
we can for example split the stream in K sub-streams adding
some redundancy to each one in order to diminish the effect
of losses at least when only one server disconnects (fails).
If the original stream needs some bandwidth of B Kbps,
then we assume that each substream will use B/K Kbps
plus some bandwidth needed to transport redundant data.
Substream j is completely sent by server j, and its content
is also sent by the remaining K − 1 servers, each of them
sending exactly a 1/(K − 1)th part of it.



Table 2: Simple Split method. Global Loss Rate
(that is, the number 1− i/K), for some values of the
initial numbers K of servers and all possible values
of the number i of surviving servers.

i/K 1 2 3 4 5

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0000 0.5000 0.6667 0.7500 0.8000
2 0.0000 0.3333 0.5000 0.6000
3 0.0000 0.2500 0.4000
4 0.0000 0.2000
5 0.0000

i/K 6 7 8 9 10

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.8333 0.8571 0.8750 0.8889 0.9000
2 0.6667 0.7143 0.7500 0.7778 0.8000
3 0.5000 0.5714 0.6250 0.6667 0.7000
4 0.3333 0.4286 0.5000 0.5556 0.6000
5 0.1667 0.2857 0.3750 0.4444 0.5000
6 0.0000 0.1429 0.2500 0.3333 0.4000
7 0.0000 0.1250 0.2222 0.3000
8 0.0000 0.1111 0.2000
9 0.0000 0.1000
10 0.0000

Let us look now at the losses when there are only i ac-
tive servers, among the K initially connected. In this case,
without any redundancy we will loose a fraction (K − i)/K
of the stream. But with the adopted redundancy scheme,
this is diminished by the fraction of this information that is
transported, as redundant data, by the remaining connected
servers. We have:

LRsplit−red
K,i =

K − i

K
− (K − i)

K

i

K − 1
=

(K − i)(K − 1− i)

K(K − 1)
.

Some values of LRsplit−red
K,i are given in Table 3.

For the evaluation of the Mean Loss Burst Size we can
use the same trivial lower and uppper bounds than in the
“split” case:

1 ≤ MLBS split−red
K,i ≤ K − 1, K ≥ i ≥ 0, K ≥ 1.

6. TESTING AND EXPERIMENTAL RESULTS
In this section we study how the frame loss process af-

fects the quality (as measured by the PSQA technique) for
the three multiple server streaming policies (“copy”, “simple
split” and “redundant split”).

6.1 Pseudo Subjective Quality with Frame
Losses

The first step was to apply the PSQA technique, as ex-
plained in Subsection 3.3. For this, we chose four MPEG2
video sequences, of about 10 seconds each, with sizes be-
tween 1.5 MB and 2.8 MB. For each sequence, we generated
twenty five different evaluation points, where each evalua-
tion point is defined by a loss rate value chosen at random
with an uniform distribution between 0.0 and 0.2, and a
mean loss burst size value chosen at random with an uni-
form distribution between 0.0 and 10.0 (the actual process
is a little bit more complex but this does not change the es-
sential aspects of the method, see [13] for more details). For

Table 3: Split method with redundancy. Global Loss
Rate, for some values of the initial numbers K of
servers and all possible values of the number i of
surviving servers.

i/K 1 2 3 4 5

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0000 0.0000 0.3333 0.5000 0.6000
2 0.0000 0.0000 0.1667 0.3000
3 0.0000 0.0000 0.1000
4 0.0000 0.0000
5 0.0000

i/K 6 7 8 9 10

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.6667 0.7143 0.7500 0.7778 0.8000
2 0.4000 0.4762 0.5357 0.5833 0.6222
3 0.2000 0.2857 0.3571 0.4167 0.4667
4 0.0667 0.1429 0.2143 0.2778 0.3333
5 0.0000 0.0476 0.1071 0.1667 0.2222
6 0.0000 0.0000 0.0357 0.0833 0.1333
7 0.0000 0.0000 0.0278 0.0667
8 0.0000 0.0000 0.0222
9 0.0000 0.0000
10 0.0000

each of the evaluation points, we used the simplified Gilbert
model to simulate a frame drop history which was applied
to the original video sequences. In this way, we obtained
one hundred modified video sequences with variable quality
levels.

The simplified Gilbert model [13, 16] consists of a 2-state
Markov process that controls which frames are lost in the
flow (so, with 2 parameters; the original Gilbert model has
3 parameters [6]). Figure 8 illustrates the dynamics of the
Markov model; at the left, the semantics of transitions, and
at the right, the Markov process (through its transition
graph) itself. The two parameters are then

p = Pr(a loss after a correct transmission)

and q = Pr(a correct transmission after a loss).

After generating the one hundred modified video sequences,
a group of five experts evaluated the sequences and the MOS
for each of the copies was computed, following the ITU-R
BT.500-11 [7] norm (see Figure 9). These MOS were scaled
into a quality metric in the range [0, 1].

Finally, we employed the MOS value for each of the design
points as inputs in order to calibrate a Random Neural Net-
work (RNN). After trained and validated, the RNN provides
a function of two variables, LR and MLBS , mapping them
into perceived quality (on a [0, 1] range). In Figure 10 we
can see the obtained function. For completitude, we extrap-
olate the curve to the borders, but observe that the data are
accurate and used on an internal region ([1%, 15%] for LR,
and [1, 4] for the MLBS).

In particular, we can observe that quality is monotone
in the two variables, and particularly increasing with the
MLBS , meaning that humans prefer sequences where losses
are concentrated over those where losses are spread through
the flow.
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Figure 8: The Gilbert-like model to represent the
loss process and the associated 2-states Markov
chain. When in state “ok”, a transition to state
“x” corresponds to a loss, and to the same state
“ok” corresponds to a correct transmission. From
state “x”, the loop corresponds to a loss and the
transition to “ok” to a correct transmission.
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Figure 10: The PSQA curve in our setting

6.2 PSQA Evaluation in our Multi-Source
Streaming Techniques

After obtaining a function mapping the two chosen param-
eters (frame loss rate and mean frame loss burst size) into
perceived quality, it only remains to evaluate it on the values
generated by the servers’ disconnections in each streaming
algorithm discussed in Section 5.

6.2.1 SendingK copies of the stream
Using the loss model for the “copy” method of Subsec-

tion 5.1, we evalute the PSQA measure in the different
LRcopy

K,i possibilities, the result is summarized in Table 4.

Table 4: Copy method. Perceived Quality as a func-
tion of K (initial number of servers) and i (number
of surviving servers).

i/K 1 2 3 4 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 1.0000
5 1.0000

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000
9 1.0000 1.0000
10 1.0000



6.2.2 Simple split of the stream intoK ≥ 2 substreams
Using the loss model for the “split” method of Subsec-

tion 5.2, we evalute the PSQA measure in the different
LRsplit

K,i possibilities, the result is summarized in Table 5 for

the lower quality bound (based in lower bound MLBS split
K,i =

1) and in Table 6 for the upper quality bound (based in

upper bound MLBS split
K,i = K − i).

Table 5: Simple Split method. Minimal Perceived
Quality (MLBS = 1) as a function of K (initial num-
ber of servers) and i (number of surviving servers).

i/K 1 2 3 4 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 0.0051 0.0045 0.0045 0.0045
2 1.0000 0.0075 0.0051 0.0045
3 1.0000 0.0099 0.0063
4 1.0000 0.0123
5 1.0000

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0045 0.0045 0.0045 0.0045 0.0045
2 0.0045 0.0045 0.0045 0.0045 0.0045
3 0.0051 0.0045 0.0045 0.0045 0.0045
4 0.0075 0.0059 0.0051 0.0046 0.0045
5 0.0146 0.0087 0.0067 0.0057 0.0051
6 1.0000 0.0168 0.0099 0.0075 0.0063
7 1.0000 0.0190 0.0111 0.0083
8 1.0000 0.0212 0.0123
9 1.0000 0.0233
10 1.0000

Table 6: Simple Split method. Maximal Perceived
Quality (MLBS = K − i) as a function of K (initial
number of servers) and i (surviving servers).

i/K 1 2 3 4 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 0.0051 0.0075 0.0097 0.0113
2 1.0000 0.0075 0.0085 0.0097
3 1.0000 0.0099 0.0105
4 1.0000 0.0123
5 1.0000

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0126 0.0136 0.0145 0.0152 0.0158
2 0.0113 0.0126 0.0136 0.0145 0.0152
3 0.0109 0.0113 0.0126 0.0136 0.0145
4 0.0126 0.0127 0.0127 0.0128 0.0136
5 0.0146 0.0146 0.0144 0.0143 0.0142
6 1.0000 0.0168 0.0165 0.0162 0.0158
7 1.0000 0.0190 0.0185 0.0179
8 1.0000 0.0212 0.0205
9 1.0000 0.0233
10 1.0000

6.2.3 Split of the stream intoK ≥ 2 substreams, adding
complete redundancyr = 1

Using the loss model for the “redundant split” method of
Subsection 5.3, we evalute the PSQA measure in the dif-
ferent LRsplit−red

K,i possibilities, the result is summarized in
Table 7 for the lower quality bound (based in lower bound

MLBS split−red
K,i = 1) and in Table 8 for the upper quality

bound (based in upper bound MLBS split−red
K,i = K − i).

Table 7: Redundanct Split. Minimal Perceived
Quality (MLBS = 1) as a function of K (initial num-
ber of servers) and i (surviving servers).

i/K 1 2 3 4 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 1.0000 0.0075 0.0051 0.0045
2 1.0000 1.0000 0.0146 0.0083
3 1.0000 1.0000 0.0233
4 1.0000 1.0000
5 1.0000

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0045 0.0045 0.0045 0.0045 0.0045
2 0.0063 0.0053 0.0047 0.0045 0.0045
3 0.0123 0.0087 0.0070 0.0060 0.0054
4 0.0333 0.0168 0.0115 0.0090 0.0075
5 1.0000 0.0442 0.0219 0.0146 0.0111
6 1.0000 1.0000 0.0555 0.0274 0.0179
7 1.0000 1.0000 0.0669 0.0333
8 1.0000 1.0000 0.0781
9 1.0000 1.0000
10 1.0000

Table 8: Redundanct Split method. Maximal Per-
ceived Quality (MLBS = K − i) as a function of K
(initial number of servers) and i (surviving servers).

i/K 1 2 3 4 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0000 1.0000 0.0126 0.0109 0.0113
2 1.0000 1.0000 0.0243 0.0179
3 1.0000 1.0000 0.0388
4 1.0000 1.0000
5 1.0000

i/K 6 7 8 9 10

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0126 0.0136 0.0145 0.0152 0.0158
2 0.0158 0.0149 0.0143 0.0145 0.0152
3 0.0263 0.0219 0.0197 0.0183 0.0174
4 0.0554 0.0360 0.0288 0.0250 0.0227
5 1.0000 0.0732 0.0468 0.0365 0.0309
6 1.0000 1.0000 0.0916 0.0585 0.0448
7 1.0000 1.0000 0.1101 0.0709
8 1.0000 1.0000 0.1283
9 1.0000 1.0000
10 1.0000



6.3 Assuring Video Quality
The PSQA technique makes it possible to know the sub-

jective quality associated with every state of the network
(i.e, with any combination of working and failed servers).
This information makes it possible to answer different inter-
esting and relevant questions.

As a first example, we can observe that the worst quality
level must occur just before a network re-configuration, that
is, at time T if we consider that the last re-configuration
happened at time 0. The mean quality (considering the
whole client population) is, with our assumptions, given by

E(QK) =

NX
i=1

QK,i(LRK,i,MLBSK,i)pK,i(T ).

Table 9 and Figure 11 compare the average video quality for
the three policies (the data was computed using the lower
bound for the perceived quality, the difference with the up-
per bound is completely negligible).

It is possible to see that, in the case where there is no
redundancy (“simple split”), the subjective quality degen-
erates rapidly with the growth of servers K. Also it is pos-
sible to compare the “copy” and “redundant split” cases,
where for the frequency of disconnection of our real scenario
it does not seem to be much gain in sending K copies of the
streaming (“copy”), as sending a single copy (“redundant
split”) only loses a little percentage of the quality.

Table 9: Average Quality as a function of the num-
ber of servers K.

K/Method “Copy” “Split” “Redundant split”
(bandwidth) (KB) (B) (2B)

1 0.9890 0.9890 0.9890
2 0.9999 0.9781 0.9999
3 1.0000 0.9675 0.9996
4 1.0000 0.9570 0.9993
5 1.0000 0.9466 0.9989
6 1.0000 0.9364 0.9983
7 1.0000 0.9264 0.9977
8 1.0000 0.9166 0.9970
9 1.0000 0.9068 0.9963
10 1.0000 0.8973 0.9955

Figure 11: Average Video Quality

Another interesting question that it is possible to answer
with our approach is how many servers are needed in each
method to ensure that with a given probability (or confi-
dence level), the quality of the transmission will be greater
or equal than a pre-defined quality level.

It is possible to see for example that if we want to ensure a
perfect quality transmission with a given probability of 0.999
(an alternative equivalent interpretation is that we want to
ensure that at least 99.9% of the users will perceive perfect
quality), we need to chose a method and a K such that:

Pr(QK > Qmin) =

NX
i=1/QK,i>Qmin)

pK,i(T ) = 0.999.

The result is shown in the Table 10. It is possible to see for
example that if we want to ensure a perfect quality with an
availability of 0.999 this can be achieved if at least 2 servers
are used in the “copy” method; or if between 2 and 4 servers
are used in the “redundant split” method. From this table,
we can see that it is impossible to attain this goal with the
“simple split” method.

Table 10: Probability of perfect quality as a function
of the number of servers K.

K/Method “Copy” “Split” “Redundant split”
(bandwidth) (KB) (B) (2B)

1 0.988950 0.988950 0.988950
2 0.999878 0.978023 0.999878
3 0.999999 0.967216 0.999636
4 ∼1.000000 0.956529 0.999278
5 ∼1.000000 0.945959 0.998806
6 ∼1.000000 0.935507 0.998222
7 ∼1.000000 0.925170 0.997529
8 ∼1.000000 0.914947 0.996729
9 ∼1.000000 0.904837 0.995826
10 ∼1.000000 0.894839 0.994820

7. CONCLUSION
This paper proposes some models that may be useful for

the design of a live-video P2P distribution system following
a multi-source procedure where the video stream is decom-
posed into different flows that come from different servers
and travel independently through the network.

The main focus is on how to ensure a high QoS for the
users, by decomposing the original signal into different flows
and eventually adding some redundancy. The QoS perceived
by the end users is captured using the PSQA technique,
which consists in training a neural network with scores given
by a panel of users for a sample of transmission conditions,
and afterwards employing this neural network to automati-
cally compute an estimation of the perceived quality.

The paper focuses on three policies; in the first one, the
original stream is entirely replicated and independently sent
from K different servers. In the second one, the original
stream is divided into K independent substreams, one per
server, so that their union reconstructs the original signal.
In the third one, the original stream is also divided into K in-
dependent substreams, but at each stream some redundancy
is added, so that the loss of any substream can be recovered



from the K − 1 remaining ones. The third technique has
much less transmission overhead than the first one, as the
total bandwidth consumed is twice the original one (while
in the first case, we use K times as much bandwidth).

To evaluate the different options, we develop analytical
models for computing the Loss Rate and Mean Loss Burst
Size as functions of the total number of servers K and the
number of servers in working order, for each of the cases.
We also give a simple transient Markovian model with an
explicit analytical solution for computing the distribution of
the number of working and failed servers at a given time T .

These models were used to experimentally evaluate some
configurations computed from realistic parameters (from in-
formation collected by a medium-sized ISP provider about
the behavior of the users of its streaming video service).

In this particular scenarios, we evaluated the resulting
perceived quality associated with the architectures mentioned
before. Among the main conclusions, we can see that (i)
in the simple split policy (with no redundancy), when the
number of servers grows, the subjective quality degrades
very quickly; (ii) in the redundant split policy, passing from
one server to two servers improves greatly the quality levels;
adding additional servers can lead to slight decreases in per-
ceived quality, but the behavior is very robust in this aspect;
(iii) the copy policy has always the best perceived quality
levels, but at the expense of much transmission overhead;
(iv) using the information computed by the models, it is
possible to take into account the different tradeoffs and for
example to define the optimal number of servers to be used
to ensure with a certain confidence a given QoS level.

This study suggests that among the different policies for
multi-source streaming techniques, the ones employing a
limited amount of redundancy may well be the methods of
choice, as they allow to improve the Qos at the expense of
a limited transmission overhead. Simple analytical models
can be useful to understand the qualitative and quantita-
tive behavior of the different policies. In order support the
designers’ decision making, it can be useful to develop more
realistic models, perhaps including other aspects as costs or
bandwidth limitations at the networks components.
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